Corynebacterium striatum: Chronic infection of a cutaneous ulcer in a patient with AIDS

Edward J. Bottone, PhD*, Marilyn Fabbri, MD, Amar Ashraf, MD

*Division of Infectious Disease, The Mount Sinai Hospital, New York, New York 10029, USA
Departments of Medicine and Pathology, New York Medical College, Valhalla, New York 10595, USA
*Division of Infectious Disease, Elmhurst Hospital Center, Elmhurst, New York 11373, USA

*Corresponding Author: edward.bottone@mssm.edu

Abstract

We describe an unusual case of C. striatum chronic infection of a cutaneous ulcer in a patient with AIDS. The bacterium was considered etiologically significant after scrapings of the lesion showed numerous gram-positive bacilli on smear, and culture rendered heavy growth of only C. striatum. Treatment with vancomycin was curative.

Keywords: AIDS; Chronic Infection; Corynebacterium striatum; Cutaneous Ulcer

Introduction

Corynebacterium other than C. diphtheriae referred to as “diphtheroids” are often regarded as normal inhabitants of the human skin. Of the 17 Corynebacterium species, three, C. jeikeium, C. urealyticum, and more recently C. striatum have garnered medical interest due to an evolving number of publications referable to community acquired and nosocomial infections (Brandenberg et al., 1996: Iaria et al., 2007: Lee et al., 2005: Martinez-Martinez et al., 1994, Martinez-Martinez et al., 1997: Otsuka et al., 2006: Renum et al., 2007). C. jeikeium is well-characterized as a pathogen in neutropenic hosts (Van der lelie et al., 2005) and those with prosthetic devices and indwelling catheters. Interest in C. striatum, as a multidrug-resistant nosocomial pathogen has also been associated with infections in patients with medical devices (Lee et al 2005), endocarditis (Boltin et al., 2009, Marull and Casares, 2008), pulmonary infections (Renom et al., 2007; Tarr et al., 2003; Martinez-Martinez et al., 1994; Batson et al., 1996) and with rare episodes of septic synovitis (Cone et al., 1998), and meningitis (Weiss et al., 1996). The spectrum of infections has led to the recognition of C. striatum as a bona-fide human community and nosocomial pathogen (Lee et al., 2005). Herein we report a case of chronic cutaneous ulcer in an AIDS patient due to C. striatum and discuss its diagnosis, treatment and review its role as a cutaneous pathogen.

Case Report

The patient is a 53-year-old female smoker with HIV/AIDS, with a CD 4 count of 275 cells/mm³ and undetectable viral load on antiretroviral therapy. She has history of COPD, peripheral vascular disease, hepatitis C and she was previously an intravenous drug user. In April 2007 she presented to the Infectious Disease Clinic with a painful nonhealing ulcer with surrounding cellulitis over the lateral aspect of her right ankle. Upon questioning the patient reported trauma to that area which resulted from her wearing a boot for five consecutive days due to snow. Swabbings of the lesion sent for culture grew Corynebacterium species, Staphylococcus epidermidis and Pseudomonas aeruginosa. The Corynebacterium was not further speciated because it was regarded as a contaminant. The patient was treated with multiple courses of antibiotics including cefin, ciprofloxacin, and clindamycin with no improvement. MRI performed at that time revealed no evidence of osteomyelitis. The patient was subsequently seen in microbiologic consultation at which time careful
scrapings of the lesion were collected for Gram stain and culture which grew only *Corynebacterium striatum*. The patient was treated with a two week course of oral linezolid with no improvement in the ulcer prompting admission to the hospital in July. On examination there was a 1 cm ulcer over her right lateral malleolus with surrounding erythema, tenderness and purulent drainage (Figure 1). Gram-stained smears and culture were repeated which again revealed only *Corynebacterium striatum*. Her right dorsalis pedis and posterior tibial pulses were palpable but femoral pulse was absent. She was started on a two week course of vancomycin and oral metronidazole which resulted in complete resolution of the ulcer. A CT angiogram performed during her hospitalization disclosed a severe right common artery stenosis and a stent was placed after hospital discharge.

Microbiology

Gram-stained smears of scrapings of the ulcerative lesion on both occasions showed the overwhelming presence of gram-positive bacilli with clubbed ends and in palisade formation (Figure 2). Many of the bacilli were visualized within polymorphonuclear leukocytes (Figure 3). Direct inoculation of the scrapings onto 5% sheep blood agar on both occasions grew pure cultures of white-to-cream colored, nonhemolytic, smooth colonies reminiscent of those produced by coagulase-negative *Staphylococcus* species (Martinez-Martinez et al 1995), (Figure 4). Gram stained smears of colony growth showed gram-positive bacilli some of which upon careful evaluation showed a striped pattern.

In addition to microscopic and colony morphology, the nonmotile, catalase positive isolate was identified as *C. striatum* through the use of the RapID CB Plus system (Remel, Leonexa, KS). The salient reactions were glucose and sucrose fermentation, nitrate reduction and negative urease production. The RapID CB Plus system resulting pattern of negative and positive scores was 3007551 which correlated with *C. striatum* in the manufacturers data base. Antimicrobial susceptibility performed by ETest strips (AB BIODISK Solna, Sweden) and using guidelines according to Clinical Laboratory Standards institute (CLSI) showed the isolate to be resistant to penicillin, clindamycin, and tetracycline, but susceptible to vancomycin (MIC 0.25 µg)

Discussion

For many years *Corynebacterium striatum* was long believed to have limited potential as a pathogen and hence was usually considered a contaminant when isolated from a patient specimen. Evidence to support the role of *C. striatum* as a pathogen in immunocompromised and immunocompetent hosts is growing. The role of *C. striatum* as a nosocomial pathogen is also evolving as it has been reported in several hospital outbreaks (Brandenburg et al., 1996; Creagh et al., 2000; Iaria et al 2007; Mashavi et al., 2005; Otsuka et al., 2006; Renom et al.,2007) In one surgical ICU outbreak, (Brandenburg et al., 1996). a single strain was isolated from clinical specimens of 14 patients over a 12-month period. Ten of the isolates (sputum, blood, and wounds) recovered from six patients were regarded as significant. The outbreak strain was isolated from surfaces and from...
air in the direct vicinity of the patients and also on the hands of hospital personnel suggesting a role in patient to patient transfer. As a colonizer of human skin, *C. striatum* can establish de novo cutaneous infections through disruption of intact skin barriers as in our case, or can invade preexisting cutaneous lesions. Watkins et al. (1993) in his series of six cases included one of a 78-year-old women with a history of colorectal cancer who punctured her finger on a rose bush thorn and developed a pyogenic granuloma. Culture of the biopsy specimen resulted in heavy growth of *C. striatum* and *P. aeruginosa*. Surgical incision without antibiotics resolved the soft tissue mass. Peris et al. (1994) described a 73-year-old woman with peripheral vascular disease who was noted to have a deep skin sinus around her elbow which was oozing pus. The sinus tract had been present for months and developed in the absence of overt trauma. Culture of the exudate recovered heavy pure growth of *C. striatum*. A similar case of a *C. striatum* infected ischemic ulcer in a 72-year-old diabetic patient was included among the series of 26 cases described by Martinez-Martinez et al. 1997. The organism was isolated from a culture of a chronic skin ulcer and another seven had surgical wound infections. Associated conditions in this set of patients included diabetes, cirrhosis, chronic renal failure, trauma, surgery, and malignancy. Patients were treated with either surgical intervention, antibiotic therapy, or both. The majority of patients who completed follow-up were cured or improved. *C. striatum* infections involving the skin have also been reported in normal hosts. A recurring breast abscess that required several drainage procedures over a seven week period was described in a 41-year-old immunocompetent woman with no underlying medical conditions. (Stone et al., 1997). Microscopy of excised tissue after her second procedure when the
Corynebacterium species have also been reported to cause serious infections in patients who are infected with HIV. Among these are Corynebacterium pseudodiphtheriticum (Cohen et al., 1992; Gutierrez et al., 1999), Corynebacterium jeikeium (Sanchez-porto et al., 1994; Turett et al., 1993), Corynebacterium urealyticum (Aracil et al., 1997), Corynebacterium minutissimum (Bandera et al., 2000) and Corynebacterium afermentans (Minkin and Shapiro 2004). These Corynebacterium species have all been reported as etiologic agents of pulmonary infections (Minkin and Shapiro 2004 (Cohen et al., 1992) bacteremia (Sanchez-porto et al., 1994; Aracil et al. 1997), liver abscess (Turett et al.1993) and costochondral abscess (Bandera et al., 2000). There have been only two case reports of C. striatum infections in AIDS patients. Tumbarello et al., (1994) described a 26-year-old male drug abuser with AIDS and cerebral toxoplasmosis necessitating a central venous catheter be placed to stabilize his condition. Twelve days later he became febrile and three blood cultures grew C. striatum which was successfully treated by removal of the central line and a 3 week course of teicoplanin. The second case report (Creagh et al., 2000) involved a 28-year-old male drug user with AIDS, Hepatitis B and C, who presented with alveolar and interstitial infiltrates that responded poorly to ceftriaxone and cefazidime. Bronchoscopy with bronchoalveolar lavage was performed with isolation of pure cultures of C. striatum. Pulmonary mycobacterial and fungal cultures, and studies for Pneumocystis jiroveci and Legionella pneumophila were negative. The patient improved clinically and radiographically with an antibiotic regimen including vancomycin, imipenem and erythromycin followed by teicoplanin and erythromycin. The diagnosis and treatment of the patient in our case report was delayed for several reasons. The C. striatum initially isolated on wound culture was dismissed as a contaminant because it was from a non-sterile site and because the Corynebacterium species was viewed as a colonizer. The resistant nature of this isolate prevented an initial response to empiric ciprofloxacin and ceftin that were given. There are limited reports on the antibiotic susceptibility pattern of C. striatum. A study conducted by Martinez-Martinez et al. (1996) of 86 C. striatum isolates from clinical specimens showed uniform susceptibility of the isolates to penicillin, cefazolin, imipenem, vancomycin and teicoplanin. In the same study, co-trimoxazole, tetracycline, ciprofloxacin, erythromycin and rifampin were found to have poor activity against C. striatum. Antibiotic susceptibility cited in several case reports and series have described multidrug resistant isolates (Iaria et al., 2007; Marull et al., 2008; Mashavi et al. 2005; Otsuka et al., 2006; Renom et al., 2007; Tarr et al., 2003, Tumbarello et al., 1994). In some cases vancomycin was considered the only active agent (Renom et al., 2007; Mashavi et al., 2005). More recently, Fernandez-Roblas et al. (2009) studied the in vitro activity of tigecycline and 10 other antimicrobial agents against 11 C. striatum isolates by ET test strips (AB BIODISK Solna, Sweden). Using Clinical and Laboratory Standards Institute (CLSI) guidelines, the authors concluded that the isolates were uniformly susceptible to tigecycline, vancomycin, linezolid, penicillin and quinupristin-dalfopristin, but resistant to erythromycin, azithromycin, clarithromycin, and clindamycin.

Corynebacterium striatum is now an established pathogen in immunocompromised and in some settings, immunocompetent hosts. Isolation of C. striatum from a clinical specimen in a patient with suspected infection should not be ignored. Evidence of large numbers of organisms on Gram stain or predominant growth in culture, or bacteraemia, support its role as a potential pathogen. The antibiotic susceptibility of C. striatum is variable and empiric therapy with a glycopeptide should be considered while awaiting the susceptibility pattern of a particular isolate.

References

